Понятия со словосочетанием «однородное пространство»

Связанные понятия

Евкли́дова ква́нтовая гравита́ция — одна из попыток построить квантовую теорию гравитации.
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
Свя́зность Ле́ви-Чиви́ты или связность, ассоциированная с метрикой — одна из основных структур на римановом многообразии.
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Симметрическое пространство — риманово многообразие, группа изометрий которого содержит центральные симметрии с центром в любой точке.
Разложение Риччи — это разложение тензора кривизны Римана на неприводимые относительно ортогональной группы тензорные части.
Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.
Риманов тензор кривизны представляет собой стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
Абелево многообразие — это проективное алгебраическое многообразие, являющееся алгебраической группой (это значит, что закон композиции задаётся регулярной функцией).
Многообразие Эйнштейна — риманово или псевдориманово многообразие, тензор Риччи которого пропорционален метрическому тензору.
Подмногообразие ― термин, используемый для нескольких схожих понятий в общей топологии, дифференциальной геометрии и алгебраической геометрии.
Уравнение эйконала (от др.-греч. εἰκών — изображение) — нелинейное дифференциальное уравнение в частных производных, встречающееся в задачах распространения волн, когда волновое уравнение аппроксимируется с помощью квазиклассического приближения.
Трансверсальность — условие общего положения на пересечение гладких многообразий.
В общей теории относительности инварианты Карминати — Макленахана (англ. Carminati-McLenaghan invariants, CM scalars) составляют один из наборов скалярных инвариантов кривизны. Они включают в себя 16 скаляров, получаемых из тензора Римана.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.
Инвариантная мера — в теории динамических систем мера, определённая в фазовом пространстве, связанная с динамической системой и не изменяющаяся с течением времени при эволюции состояния динамической системы в фазовом пространстве. Понятие инвариантной меры применяется при усреднении уравнений движения, в теории показателей Ляпунова, в теории метрической энтропии и вероятностных фрактальных размерностей.
Эквифокальная гиперповерхность (или гиперповерхность Дюпена) — гиперповерхность в пространственной форме, у которой значение главных кривизн и их кратности одинаковы во всех точках.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.

Подробнее: Особая точка (дифференциальные уравнения)
Пространства Тайхмюллера — пространство комплексных структур на вещественной поверхности с точностью до изотопии тождественному отображению.
Телепараллелизм — это одна из попыток Эйнштейна создать теорию, объединяющую электромагнетизм и гравитацию. Пространство-время является, как обычно псевдоримановым многообразием c сигнатурой метрики (1,3), но, в отличие от ОТО, с нулевой кривизной и ненулевым кручением. В качестве описания гравитационного поля рассматривается не псевдориманова метрика, а поле реперов.
Вложение Сегре используется в проективной геометрии для того, чтобы рассматривать прямое произведение двух проективных пространств как проективное многообразие. Названо в честь итальянского математика Беньямино Сегре.
Интеграл Пуанкаре — Картана - относительный интегральный инвариант первого порядка для классической динамической системы в потенциальном поле (интегральный инвариант Пуанкаре-Картана).
Тензорное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие тензор.
Гладкие структуры на четырёхмерном евклидовом пространстве — примеры гладких многообразий гомеоморфных, но не обязательно диффеоморфных четырёхмерному евклидову пространству.
Локально тривиальное расслоение — расслоение, которое локально выглядит как прямое произведение.
Пространство Фреше — полное локально выпуклое пространство, топология которого может быть задана метрикой. Названо в честь Мориса Фреше.
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Конформная теория поля это квантовая теория поля, которая является инвариантной относительно конформных преобразований. При размерности пространства равном двум может быть решена в точности.
Индекс особой точки векторного поля — математическое понятие, относящееся к дифференциальной топологии, дифференциальной геометрии, теории динамических систем и теории дифференциальных уравнений. Является топологической характеристикой изолированной особой точки векторного поля и определяется как степень гауссова отображения в данной точке.
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Гомологическое многообразие — локально компактное топологическое пространство, которое выглядит локально как топологическое многообразие с точки зрения теории гомологий.
Трёхмерная сфера, или трёхмерная гиперсфера, иногда 3-сфера, — трёхмерный аналог двумерной сферы. Состоит из множества точек, равноудалённых от фиксированной центральной точки в четырёхмерном евклидовом пространстве. Так же, как двумерная сфера, которая образует границу шара в трёх измерениях, 3-сфера имеет три измерения и является границей четырёхмерного шара.
В этой статье рассматривается математический базис общей теории относительности.

Подробнее: Математическая формулировка общей теории относительности
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Теорема об инвариантности области утверждает, что образ непрерывного инъективного отображения Евклидова пространства в себя открыт.
Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Экстремально несвязное пространство, которое также является компактным и хаусдорфовым иногда называется Stonean пространством (не путать со стоуновским пространством, которое является вполне несвязным компактным хаусдорфовым пространством). Теорема Эндрю Глизона говорит, что проективные объекты категории компактных хаусдорфовых пространств — это в точности экстремально разрывные компактные хаусдорфовы пространства. Вследствие дуальности между стоуновскими пространством и булевыми алгебрами существует...
Теорема о сфере — классическое утверждение трёхмерной топологии, доказанное Христосом Папакирьякопулосом в 1956 году вместе с леммой Дена и теоремой о петле.
Слабая гомотопическая эквивалентность — отображение между топологическими пространствами индуцируещее изоморфизм гомотопических групп.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Теорема о сфере — общее название теорем, дающих достаточные условия на риманову метрику, гарантирующие гомеоморфность или диффеоморфность многообразия стандартной сфере.
Многомерный комплексный анализ — раздел математики, изучающий голоморфные функции нескольких комплексных переменных, определенные в многомерном комплексном пространстве, голоморфные отображения и подмногообразия комплексного пространства. Начало систематическому изучению многомерных комплексных функций было положено К. Вейерштрассом и А. Пуанкаре в конце XIX века. А. Пуанкаре распространил на функции нескольких переменных основную теорему Коши и заложил основы многомерной теории вычетов. Методы многомерного...
Теория амёб — раздел комплексного анализа, изучающий геометрию алгебраических множеств. Находит широкое применение в алгебраической и тропической геометрии.
Классическая теория поля — физическая теория о взаимодействии полей и материи, не затрагивающая квантовых явлений. Обычно различают релятивистскую и нерелятивистскую теорию поля.
Геометрическое квантование — метод квантования классических теорий и моделей физических систем, при котором построение квантовых аналогов происходит исходя из геометрии пространств состояний (фазовых пространств) соответствующих классических объектов. Геометрическое квантование возникло из стремления распространить методы квантования простых механических систем на более общие системы и фазовые пространства, а также достижения в теории унитарных представлений. В основе геометрического квантования...
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я